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An interesting approach named Airy averaging, introduced some years ago by Englert
and Schwinger, is brought to the attention of a broader audience as a simple and powerful
mathematical tool for applications involving Airy functions.

1. Introduction

The pair of linearly independent solutions Ai(z) and Bi(z) of the differential
equation

d2y(z)
dz2 − zy(z) = 0 (1)

are known as Airy functions [1].
Although such functions have found applications in the study of phenomena as

different as rainbows [3] and earthquakes [15], their most familiar use is probably in
quantum mechanics, for example, in the context of the WKB connection problem [8,
16,35] and the solution of the one-dimensional Schrödinger equation of a particle
subjected to a constant force [26] (these two topics are actually closely related to each
other). To remain in the quantum-mechanical context, we should remember the role
of the Airy functions in some approaches addressed to improve the statistical-atom
model beyond the Thomas–Fermi approximation [13].

Much experience concerning these special functions has been gained thanks to
work carried out by chemical research groups in various fields. Semiclassical theory
of scattering [9], molecular photodissociation and photofragmentation [21], Raman
scattering spectroscopy [28] are a few of them. It is also a remarkable fact that
the study of the analytical properties of the Airy functions has gone along with the
development of efficient methods for their calculation to high accuracy [19,27].

The time-independent one-dimensional Schrödinger equations for a particle (mass
m) acted by a constant force F ,

d2φ(x;E)
dx2 +

2m
~2 (E + Fx)φ(x;E) = 0, (2)
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has the well-known solution

φ(x;E) = βF 1/2Ai
[
−β(E + Fx)

]
, β =

(
2m
~2F 2

)1/3

, (3)

which satisfies the boundary condition φ(−∞;E) = 0. The eigenvalue spectrum sup-
ported by the problem on issue is continuous and spans the infinite range (−∞, +∞).

The recourse to the integral representation of the Airy function,

Ai(y) =
1

2π

∫ ∞
−∞

dx exp

[
−i

(
x3

3
+ yx

)]
, (4)

allows one to verify easily the two following properties:

(i)
∫ ∞
−∞

dxφ∗(x;E)φ(x;E′) = δ(E −E′) (orthonormality),

(5)
(ii)

∫ ∞
−∞

dE φ∗(x;E)φ(x′;E) = δ(x − x′) (completeness).

Property (ii) is particularly important, because it warrants the existence of a rig-
orous basis-set representation for both scattering and bound states in one-dimensional
quantum systems. Airy functions Ai(z) have actually been employed in this perspec-
tive, for instance, for studies of collision-induced dissociation processes [22,23]. A nice
feature of the use of such functions lies in the simple mathematical structure of the
(continuum) matrix elements encountered in the calculations.

A number of useful (and elegant) results for mathematical quantities related to the
Airy functions Ai(z) have been obtained in [13]. Therein, in particular, a remarkable
procedure called “Airy averaging” is introduced, which proves to be a versatile tool for
manipulating conveniently mathematical expressions involving Airy functions. In the
present paper, we propose to review this ingenious procedure, so as to make it better
known in view of its utility and simplicity. Some applications will then be discussed
to illustrate concretely such virtues.

2. Airy averaging

The integral representation of the Airy function Ai(y), equation (4), allows one
to obtain readily the following result:∫ ∞

−∞
dy Ai(y)eixy = exp

(
−i
x3

3

)
, (6)

interpretable as the Fourier transform of Ai(y) itself. As a special case of equation (6),
we have ∫ ∞

−∞
dy Ai(y) = 1. (7)
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The validity of the last result suggests immediately the idea of a (normalized) “Airy
distribution”. The “Airy averaging” of an arbitrary function f (y) then follows in a
straightforward way according to the definition

〈
f (y)

〉
Ai ≡

∫ ∞
−∞

dy f (y)Ai(y). (8)

It is soon realized that the “Airy averaging” operation is a linear mapping. In particular,
with f (y) =

∫ b
a dtK(t, y),〈∫ b

a
dtK(t, y)

〉
Ai

=

∫ b

a
dt
〈
K(t, y)

〉
Ai, (9)

as one recognizes after simply exchanging two integration orders.
The following result is a trivial consequence stemming from the comparison of

equations (6) and (8): 〈
exp(ixy)

〉
Ai = exp

(
−i
x3

3

)
. (10)

Everything found in this section derives from [13]. Despite its brevity, it is enough
for our purposes. In the next section, we start by presenting a few mathematical results
which descend from the utilization of the procedure just described. Emphasis will be
placed on the evaluation of certain integrals involving Airy functions Ai(z).

3. Airy averaging: some mathematical applications

As a first (and direct) consequence of the procedure outlined in the previous
section, we consider the evaluation of the following type of integrals:

In ≡
∫ ∞
−∞

dy ynAi(y) =
〈
yn
〉

Ai, (11)

which can be regarded as defining the nth order moment of the “Airy distribution”.
If we set, in equation (8), f (y) = yneixy (with n positive or null integer), it is easily
verified that

In = i−n
[
∂n

∂xn
〈
exp(ixy)

〉
Ai

]
x=0

= i−n
[
∂n

∂xn
e−ix3/3

]
x=0

. (12)

The non-zero “Airy distribution” moments In are therefore only those with n = 3k
(k = 0, 1, 2, . . .). The general result I3k = (3k)!/(k!3k ) which follows from equa-
tion (12) had been obtained previously by Gislason on the basis of a different analytical
procedure [18].
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A second application is offered by the evaluation of the following family of
two-parameter integrals involving Airy functions:

I(α,β) ≡
∫ ∞
−∞

dy exp(iαy)Ai(y)Ai(y + β), (13)

which can be interpreted as the Fourier transform of the product of two Airy functions
with shifted arguments. The solution of a (one-dimensional) quantum problem in
terms of a continuum basis set of Airy functions leads to matrix elements which can
be reduced immediately to a form involving integrals containing products of Airy
functions with shifted arguments.

Taking into account equation (8), we have

I(α,β) =
〈
eiαyAi(y + β)

〉
Ai. (14)

The integral representation of the Airy function, equation (4), combined with the linear
nature of the Airy averaging allows to cast equation (14) into the form

I(α,β) =
e−iα3/3

2π

∫ ∞
−∞

dx exp

[
−iα

(
x2 − α2 − β

α
x

)]
, (15)

which involves a simple Gaussian integral. The final result,

I(α,β) =
1

2(iπα)1/2
exp

[
− i

2

(
α3

6
+ αβ − β2

2α

)]
, (16)

should be compared with that obtained previously by Lee and Light [29] through a
procedure based on the representation of the one-dimensional quantum propagator of
a particle subjected to a uniform field in terms of the continuum eigenstates of the
problem, equation (4).

A corollary of the preceding result is

I(0,β) = δ(β), (17)

clearly a consequence of the completeness condition of the Airy functions, equa-
tion (5) (ii). The result just derived is a particular case of the family of integrals

Jn(β) ≡
∫ ∞
−∞

dy ynAi(y)Ai(y + β), (18)

which can be evaluated from equation (16) according to the simple rule

Jn(β) = i−n
[
∂nI(α,β)
∂αn

]
α=0

. (19)

Continuum matrix elements of the type of relation (18) between Airy functions have
been employed in the study of collision-induced processes [22,23].

As a further example of the instrumental use of the Airy averaging for mathemat-
ical manipulations, we propose to deduce a useful integral representation of [Ai(x)]2,
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the square of the Airy function Ai(x). Such a quantity is encountered in semiclassi-
cal S-matrix theory of inelastic collisions [31] and has been found of utility in the
quantum-mechanical study of the electron photodetachment from negative ions in the
presence of a static electric field [12,17,20]. From the obvious identity[

Ai(x)
]2

=
〈
Ai(y)δ(y − x)

〉
Ai, (20)

the simple recourse to the Fourier representation of the Dirac delta function and equa-
tion (9) yield [

Ai(x)
]2

=
1

2π

∫ ∞
−∞

dt e−itx〈Ai(y)eity〉
Ai. (21)

From equations (14) and (16), the equality〈
Ai(y)eity〉

Ai ≡ I(t, 0)

is soon recognized, so that

[
Ai(x)

]2
=

1
(2π)2

∫ ∞
−∞

dt

(
π

it

)1/2

exp

[
−i

(
t3

12
+ xt

)]
, (22)

an integral representation already known [29], obtained here in a very simple and
admittedly elegant way.

The result just derived can be cast into a form which proves to be useful for
some developments considered in the next section. The change of variable z = 2−2/3t
and the recourse to equation (10) allow one to re-express equation (22) as follows:[

Ai(x)
]2

=
24/3π1/2

(2π)2 Re
∫ ∞

0
dz

exp(−i22/3xz)

(iz)1/2

〈
eizx〉

Ai. (23)

A further change of variable, z = s2, then leads to a Gaussian integral that is easily
evaluated. After a few additional manipulations, one attains the following alternative
expression for [Ai(x)]2:[

Ai(x)
]2

=
1

2π
Re
〈(

2−2/3y − x
)−1/2〉

Ai. (24)

According to equation (24), [Ai(x)]2 is proportional to the real part of the Airy averag-
ing of the function (2−2/3y − x)−1/2. Essentially the same result as equation (23) has
been put forward by Englert and Schwinger [13] in a nice paper aimed at introducing
quantum corrections to the statistical atom beyond the Thomas–Fermi approximation.

An asymptotic expansion of [Ai(x)]2 for x < 0, |x| � 1, according to equa-
tion (24) (see the appendix) will be extremely useful for developing a physical appli-
cation presented in the next section.

As a final example of the potentiality of procedures founded on the Airy averag-
ing, we shall derive an interesting representation of the Airy function in the form of a
series involving Dirac delta function and its derivatives. The integral representation of
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the Airy function, equation (4), by use of equation (10), can be cast into the following
form:

Ai(y) =
1

2π

∫ ∞
−∞

dk e−iky〈eikx〉
Ai.

If we now expand eikx in power series, from equation (12) it follows that〈
eikx〉

Ai =
∞∑
n=0

(ik)3n

3nn!

and, after simple manipulations,

Ai(y) = δ(y) +
∞∑
n=1

(−1)n d3n

3nn! dy3n δ(y), (25)

the searched representation. A truncated form of equation (25) has been used by Heller
in a paper [21] addressing to introduce quantum corrections to classical molecular
photodissociation models, so as to overcome the “reflection” approximation [11,36].
Further applications of equation (25) to discuss semiclassical expansions in the context
of Franck–Condon transitions are found in a very recent paper [24].

4. The response of confined charged particles to a d.c. electric field

Electric polarizability and hyperpolarizabilities are well-known microscopic re-
sponse functions which play a basic role in characterizing the linear and non-linear op-
tical behaviour of molecules subjected to electromagnetic fields. In particular, thanks
to recent technological progress, one is nowadays allowed to produce very smooth
nanostructure semiconducting systems based on quantum-well concepts [14,25], en-
dowed with peculiar response properties compared to those of bulk matter. Systems
of this sort can be mimicked usefully by recourse to schematic models. Here we shall
consider one of these models, a single carrier (effective mass m and electric charge
−e) acted on by a d.c. electric field and confined to a parallelepiped box with impene-
trable walls, a quantum-mechanical system revisited many times, mostly for pedagogic
reasons [6,7,30,32].

Assuming the electric field to be oriented along one of the box edges (x-axis),
the quantum stationary states of the carrier in the (y, z)-plane are those of a particle
bouncing freely within a two-dimensional closed “court” delimited by infinitely high
walls, an elementary model treated in introductory textbooks of quantum mechan-
ics, and thus the problem is reduced to getting the solutions of the one-dimensional
Schrödinger equation in the presence of a constant field, equation (2), with the bound-
ary conditions φ(0;E) = φ(L;E) = 0 (the two relevant walls of the box being placed
at x = 0 and x = L, respectively).

The searched solution to equation (2) can be expressed as follows:

φ(x;E) = NAi
[
−β(E + Fx)

]
+MBi

[
−β(E + Fx)

]
, (26)
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Bi(y) being the irregular Airy function of the argument indicated. The impenetrable-
box boundary conditions φ(0;E) = φ(L;E) = 0 yield the secular equation∣∣∣∣ Ai[−βE] Bi[−βE]

Ai[−β(E + FL)] Bi[−β(E + FL)]

∣∣∣∣ = 0, (27)

whose solution provides the allowed eigenvalues En of the problem. The implementa-
tion of a procedure leading to exact eigenvalues rigorously dressed by the field is not
a trivial matter (for a suggested graphical approach, see, for example, [10]); for our
present purposes, however, we are exempted from such task. For any eigenvalue En,
the ratio Mn/Nn between the coefficients of equation (26) must satisfy the conditions

Mn

Nn
= −Ai[−βEn]

Bi[−βEn]
= −Ai[−β(En + FL)]

Bi[−β(En + FL)]
. (28)

Equation (26) for the eigenfunction φ(x;En) is then usefully expressed in the form

φ(x;En) = Nn

{
Ai
[
−β(En + Fx)

]
+
Mn

Nn
Bi
[
−β(En + Fx)

]}
, (29)

to be used in conjunction with equation (28).
The centroid of the carrier distribution in the presence of field, i.e., the expectation

value 〈x〉 of its position in a given energy eigenstate, 〈x〉 =
∫ L

0 dxx|φ(x;E)|2, can be
cast into the form

〈x〉 =
N2

3π2(βF )2

[
2βE

Bi2[−βE]
− β(2E − FL)

Bi2[−β(E + FL)]

]
, (30)

where, for the sake of simplicity, any label related to the specific state considered
has been deleted. Equation (30) follows after some rather direct manipulations where
known exact results for indefinite integrals involving products of Airy functions Ai(x)
and/or Bi(x) and powers have been used [4], along with the conditions expressed by
equation (28) and the Wronskian property W [Ai, Bi] = π−1 [1].

A procedure entirely equivalent to that just described allows to express the
squared normalization constant N2 as

N2 = π2βF

[
1

Bi2[−β(E + FL)]
− 1

Bi2[−βE]

]−1

. (31)

At the cost of some additional labor, the centroid of the carrier distribution in a
given energy eigenstate can be cast into the following final form:

〈x〉(F ) =
L

3
[
1−

(Ai[−β(E(F )+FL)]
Ai[−βE(F )]

)2] − 2
3
E(F )
F

, (32)

which involves the ratio between squared Airy functions Ai(y) with shifted arguments.
In equation (32), the F -dependence of the various quantities has been emphasized.

The carrier-distribution centroid 〈x〉(F ) depends on the electric force strength F in
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a surely complicated way, considering that F appears not only explicitly, but also
implicitly, through the F -dependence of the energy eigenvalue E(F ). All of this,
however, is hardly surprising, inasmuch as the result derived, equation (32), is a
rigorous one, without restrictions posed, for example, by perturbation-theory validity
arguments.

The departure of 〈x〉(F ) from its value L/2 in the absence of the external field
is essentially a measure of the response of the charged-carrier distribution, confined
within the box, to the applied electric field E = F/(−e). For relatively weak fields,
a perturbation-theory description truncated at a proper order appears to be a sensible
way of proceeding. Thus, according to the usual approaches, we set

E(F ) = E(0) − µpE −
1
2!
αE2 − 1

3!
βE3 − 1

4!
γE4 + · · · , (33)

an (asymptotic) series in powers of the field. The quantities on the right-hand side
of equation (33) are soon identified as the permanent dipole moment (µp), the static
electric dipole polarizability (α) and the various electric dipole hyperpolarizabilities
(β, γ, . . .) [33]. The truncation of equation (31) after the fourth power of the field
corresponds to considering a nonlinear electric response which is adequate to most
realistic situations.

From equation (33), application of the Hellmann–Feynman theorem [5], ∂E(F )/
∂E = e〈x〉(F ) = −µ(E), yields

µ(E) = µp + αE +
1
2!
βE2 +

1
3!
γE3 + · · · , (34)

so that the extraction from equation (33) of the response functions α,β, γ, . . . leads to
consider the equation

µp + 2αE +
7
6
βE2 +

5
12
γE3 + · · · = −

[
eL

v(E)
+

2E(0)
E

]
,

v(E) ≡ 1−
{

Ai[−β(E(F )− eEL)]
Ai[−βE(F )]

}2

, (35)

with E(F ) expressed by equation (33). The most obvious way of proceeding involves
an expansion of the right-hand side of equation (35) in powers of the field E . It is
then straightforward to verify the following expressions for µp,α,β, γ, . . . :

µp =− lim
E→0

[
2E(0)
E +

eL

v(E)

]
,

α= lim
E→0

[
E(0)
E2 −

eL

2
∂

∂E

(
1
v(E)

)]
, β = − lim

E→0

[
12
7
E(0)
E3 +

3eL
7

∂2

∂E2

(
1
v(E)

)]
,

γ = lim
E→0

[
24
5
E(0)
E4 −

2eL
5

∂3

∂E3

(
1

v(E)

)]
, . . . . (36)
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Considering the form of equations (36), in particular the requested limit E → 0
and the expression of v(E), equation (35), one becomes soon convinced that the needed
developments for obtaining α,β, γ, . . . by necessity require manipulations involving
the asymptotic behaviour of [Ai(−|y|)]2 (|y| � 1). Such asymptotic behaviour in the
form of expansion in inverse powers of |y| is derived in the appendix starting from
equation (24), a consequence of the Airy averaging trick.

At the cost of much paper and very annoying algebra, a procedure bristling
with noticeable error occurrence leads to the following results for linear and non-
linear dipole polarizabilities in the case of a carrier in the field-free energy level
En(0) = π2~2n2/(2mL2) (n = 1, 2, . . .):

α=
e2L2

8En(0)

[
−1

3
+

5~2

2mL2En(0)

]
, β = 0,

γ =
e4L4

32E3
n(0)

[
−1

3
+

35~2

mL2En(0)
− 165~4

m2L4E2
n(0)

]
. (37)

The expressions just derived agree perfectly with those obtained by Rustagi and
Ducuing [34] through a straightforward perturbation-theory treatment. They have been
used for rough estimates of the electric response of systems involving delocalized
electrons, for example, organic molecules such as polyenes and cyanines. The linear
response α of the model on issue has been evaluated many times [2,6,7,10,32], with
results not always agreeing with each other.

Appendix

The result for the square of the Airy function Ai(y), equation (24), can be ex-
pressed as follows:

2π
[
Ai(y)

]2
= Re

[∫ 22/3y

−∞
dx

Ai(x)

(2−2/3x− y)1/2
+

∫ ∞
22/3y

dx
Ai(x)

(2−2/3x− y)1/2

]
, (A.1)

so that

2π
[
Ai(y)

]2
=

∫ ∞
22/3y

dx
Ai(x)

(2−2/3x− y)1/2
. (A.2)

We shall be particularly interested in the case y < 0, with |y| � 1. Under such
conditions, the neglect of the contribution to the integral from the interval (22/3|y|,∞)
leads to the result

2π
[
Ai
(
−|y|

)]2 ∼= |y|−1/2
∫ 22/3|y|

−22/3|y|
dxAi(x)

[
1 +

2−2/3x

|y|

]−1/2

. (A.3)
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After expanding the quantity (1+2−2/3x/|y|)−1/2 in powers of 2−2/3x/|y| and restoring
the integration limits to ±∞, we obtain readily the following asymptotic expansion
for [Ai(−|y|)]2: [

Ai
(
−|y|

)]2 ∼= |y|−1/2

2π

[
1 +

∞∑
n=1

(−1)n2−2n/3

2nn!|y|n
〈
xn
〉

Ai

]
. (A.4)

Use of the results for the Airy averaging 〈xn〉Ai found in section 2 (see equation (12))
leads to the final result[

Ai
(
−|y|

)]2 ∼= |y|−1/2

2π

[
1 +

∞∑
k=1

(−1)k(6k − 1)!!
(96)kk!|y|3k

]
. (A.5)

As remarked elsewhere [13], we could have attained the result expressed by equa-
tion (A.5) starting from the known asymptotic behaviour of the Airy function Ai(y)
for −y � 1 [1]. Such a procedure would be surely much more troublesome, because
of the presence of oscillatory factors in the usual Airy function asymptotic behaviour
for −y � 1, and the necessity of having recourse to some averaging over oscillations.
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